Kako interpretirati podatke za polarnu svjetlost (auroru)

Polarna svjetlost koja se u nedjelju 5.11.2023. vidjela iz Hrvatske proizvela je veliko oduševljenje kod onih koji su ju uspjeli vidjeti, ali jednako tako i razočaranje kod onih koji su zakasnili na show. Hrvatska se s gledišta mogućnosti gledanja polarne svjetlosti nalazi jako južno, što znači da ju možemo vidjeti tek u iznimnim situacijama. To se donekle može prognozirati, ali bilo je mnogih netočnih obavijesti od strane raznih opskurnih portala i pojedinaca, u lovu na lajkiće, pa evo o tome tekst, da probam bar malo razjasniti kako doći do korektne prognoze, a onda i kako interpretirati podatke.
 
Podatke je najbolje pratiti preko stranice SpaceWeatherLive, bilo na FB, webu ili aplikaciji za mobitele. Novosti i upozorenja možete pratiti i na Space Weather Prediction Center web stranicama.
 
Polarnu svjetlost koja se potencijalno može vidjeti iz naših krajeva većinom uzrokuju snažni izbačaji materijala sa Sunca (CME – coronal mass ejection). Grupe sunčevih pjega su magnetizirane i ponekad može doći do pucanja magnetskih silnica, što rezultira izbačajem plazme sa Sunca. Neću dalje cjepidlačiti s teorijom, tko želi, neka se prebaci na svoju omiljenu tražilicu 😉
 
Sunčevih pjega, a time i mogućnosti za izbačaje, ima više što je bliže maksimum sunčeve aktivnosti. Solarni ciklus traje otprilike 11 godina. Iako se izbačaji mogu dogoditi bilo kada, oni su brojniji i snažniji u par godina oko maksimuma. A sad je vrijeme maksimuma!
 
Izbačaj, naravno, mora biti usmjeren prema Zemlji! On ne mora uvijek biti direktan, može nas zakačiti samo postrance i svejedno uzrokovati polarnu svjetlost. CME se otprilike može vizualizirati kao širenje valova kad u vodu bacimo kamenčugu. Ovisno o brzini izbačaja, prognoza za auroru se može napraviti ne dulje od 2-3 dana unaprijed. Toliko, naime, treba materijalu da stigne do Zemlje. Ako vam netko izvali biser tipa “BITI ĆE SNAŽNA AURORA ZA 10 DANA!”, odmah možete zaključiti da je crackpot ili je nažalost zaveden nekim od mnogih crackpota. U svakom slučaju, obavezno PROVJERITE izvor informacija. To inače vrijedi za sve informacije na internetima. Nemojte biti ovce ili papagaji.
 
Snaga nekog izbačaja se označava slovima od koji su nam bitni M i X. M je kao “medium”, X je valjda “extra” 😁 Ako pročitate da je X 3, 4, 5, odmah naćulite uši i oči, pripremite fotiće…ali uzmite u obzir da to uopće nije pravilo! Za ovu “našu” auroru zapravo uopće nemam pojma koji točno izbačaj ju je uzrokovao 😅 Nije bilo X-a, bio je samo neki bijedni M u četvrtak.
 
Inače, odgovor “ne znam” je sasvim legitiman odgovor na neko pitanje. Trebate se paziti onih koji sve znaju i “misle svojom glavom”.
Polarna svjetlost sa Sljemena, 5.11.2023.

Kad pročitate upozorenje za moguću polarnu svjetlost, sjetite se da smo JAKO JUŽNO. Pogledajte koji je Kp indeks (neki ga označavaju samo s K) na skali 1-10. Ako je 6, možete već lagano dignuti obrvu. Ako je 7, bacite se na detaljno proučavanje podataka jer postoji realna mogućnost da se aurora vidi ili barem fotografira. Ako vidite Kp 8 ili 9, ako treba ostavite partnera, djecu, sterajte zločestog šefa gdje mu je mjesto, i odmah trčite van!!!

Kp indeks 15.3.2015. kad se iz Hrvatske mogla fotografirati blijeda polarna svjetlost
Polarna svjetlost snimljena sa Sljemena, 17.3.2015. oko 21h.

E, da, ali ako istrčite van po danu, onda ste se zeznuli. Jer aurora se vidi samo po noći. Što znači da možda negdje na Zemlji bijesni geomagnetska oluja, samo što vi to ne možete vidjeti. Dok kod nas dođe noć, aktivnost će možda prestati…ali možda će se i pojačati.

Za auroru koju smo gledali Kp indeks je na kratko skočio na 7. Gledao sam u preko nekoliko prethodnih situacija da je Kp dosegnuo 7, a da se ništa nije vidjelo. Samo vrijednost Kp indeksa nije dovoljna garancija za vidljivost polarne svjetlosti. Može se pogledati i G klasa oluje koja ide od 1 do 5. Nekad se već s G2 može kod nas uhvatiti aurora fotoaparatom, a 5.11. je oluja bila klasificirana kao G3. Ako je G4 ili G5, trčite van!
 
OK, treća stvar, bacite pogled na “auroral oval” kartu (ima u attachanim slikicama). Karta pokazuje krug iznad koje područja se nalazi aurora, te njen intenzitet (zeleno – jad i bijeda; crveno – spektakl!). Auroral oval nikada neće biti točno iznad Hrvatske! Mi samo iz daljine gledamo polarnu svjetlost koja se nalazi na velikim visinama. Na slikici možete vidjeti da je zeleni dio ovala dosegnuo do Danske i juga Švedske. Do tamo ima zračne linije cca 1000 km, a gornji dijelovi aurore mogu dosegnuti do 300 km i više, pa je to ono što mi iz daljine zapravo gledamo.
Auroral oval, 5.11.2023.
Primjetili ste da je naziv “oval”, dakle elipsa, ne krug. To je zato što sunčev vjetar gura magnetske silnice u smjeru suprotnom od Sunca. To, pak, znači da će aurora u ponoć biti najjužnije moguće. Sad tu možemo odmah vidjeti iznimku jer u nedjelju je najljući show bio oko 18:20. Kako to? Pa geomagnetska oluja nije “pristojna” nego divlja kao i svaka druga oluja – malo je jača, malo slabija. Dakle treba biti spreman i pratiti situaciju.
 
Važan podatak je i brzina sunčevog vjetra! Već brzina će imati žešći učinak na Zemlji. U nedjelju je brzina nažalost bila samo 400-500 km/s. Treba navijati da bude više od 1000!
 
Budući da sad već imate SpaceWeatherLive aplikaciju, sad već možete čačkati po detaljnijim podacima, a to su Bz i Bt vrijednosti. Bt je vrijednost međuplanetarnog magnetnog polja, što više to bolje (za vidljivost aurore!). S druge strane, što Bz vrijednost više ide prema negativnom, također je više šanse za vidljivost! Nemojte me pitati za detalje 😆 ja sam samo astronom amater koji se ovime bavi iz gušta, ne moram svo znanje sipati iz rukava, ionako i ovo prepisujem jer bi se htio bolje pripremiti za sljedeći put 😉
 
E sad bacite pogled na magnetogram (instrument je u Kiruni, Švedska), tu sad postaje zanimljivo. Kad vrijednost ode žestoko u minus, gledajte vani i pripremite fotiće! Na grafu je označeno da je vrijednost bila -874 nT (nano Tesla) u 17:20 UT (universal time, Greenwich vrijeme). To je 18:20 po našem vremenu. Šta je bilo u 18:20? Pa da, onaj brutalni show kad smo jarko crvenu auroru mogli vidjeti golim okom! E, na to sam zakasnio 15 minuta 😆
Magnetogram tijekom noći 5.11.2023.

Pogledajte dalje, tu su još dva špica prema dolje. Nažalost oznake nisu baš jasne, ali to je bilo oko 20 i 23 h po lokalnom vremenu, upravo kada su nastale najljepše fotke. Ja sam doma krenuo oko 22:30, dakle profulao sam i ono u 23 h 🙄 Golim okom se to ipak nije vidjelo, a između toga se praktički ništa nije moglo zabilježiti niti na fotkama. Tu je još jedan špic oko 4:30 lokalno, tad nema nikakvih izvještaja, ali možda su neke security kamere (ili one za meteore!) nešto uhvatile, iako je tada već smetao Mjesec.

Među slikicama u ovoj objavi su i dvije (𝗺𝗼𝗷𝗲! 😁) fotografije prekrasne polarne svjetlosti koja se vidjela 28.10.2003. godine, dakle prije gotovo točno 20 godina! Oluju je uzrokovala erupcija snage X17 😱🤯oluja je bila razine G5, a brzina solarnog vjetra je išla i do 2100 km/s! Par dana kasnije je ista grupa pjega ispljunula X28, što su kasnije neki procijenili do X45…a to je već Carrington event koji je srećom bio na rubu vidljivog sunčevog diska, dakle fulalo nas je! Te godine se polarna svjetlost iz Hrvatske mogla vidjeti čak tri puta.

Aurora koju sam fotografirao iz okolice Sv. Nedelje 2003.

Kako napraviti barndoor montažu

Najčešće pitanje početnika u praktičnoj astronomiji je, uz odabir teleskopa, “kako mogu fotografirati zvijezde”. Teleskopi sa motoriziranim praćenjem gibanja nebeskog svoda su skupi te nerijetko izvor frustracija zbog njihove složenosti. Fotografiranje kroz teleskop uz specijaliziranu opremu zahtjeva napredno znanje da bi se dobili kvalitetni rezultati. Ipak, zvjezdano nebo može se fotografirati bez teleskopa, digitalnim fotoaparatom uz pomoć jednostavne montaže koju svatko može napraviti u kućnoj radinosti. Takva montaža poznata je pod nazivom “barndoor” ili “scotch” montaža koju je osmislio škot George Haig. U Hrvatskoj ju nazivamo “tangentna” jer njeno gibanje opisuje tangentu kružnice, ali uglavnom se držimo naziva barndoor. Komercijalne montaže ovakvog tipa (Sky-Watcher Star Adventurer, Astrotrac, Vixen Polarie i druge) prodaju se za nekoliko stotina EUR dok barndoor možete napraviti za manje od 100kn. Zgodna i ne preskupa montaža je Omegon MiniTrack LX2, ali ipak je gušt fotkati s nečim napravljenim vlastitim snagama.

Moja barndoor montaža

Princip rada montaže je jednostavan – dvije drvene ploče spojene su šarkom čiju je os potrebno usmjeriti prema zvijezdi Sjevernjači. Okretanjem vijka u smjeru suprotnom kazaljke na satu pomiče se gornja ploča na kojoj je smješten fotoaparat i tako se prati gibanje zvijezda oko sjevernog nebeskog pola. Zvijezde na fotografiji ostaju točkice te je moguće snimati fotografije ekspozicije 7 do 10 minuta, ovisno o žarišnoj duljini objektiva kojim se snima. Međutim, ekspozicije 1-3 minute su sasvim dovoljne za kvalitetne astrofotografije.

Ekspozicija od dvije minute sa i bez barndoor montaže. Maglica Sjeverna Amerika snimljena sa Sljemena. Nikon D5100 i 50 mm objektiv.

Ovaj tip montaže je najjednostavniji za izraditi i predviđen je za upotrebu sa čvrstim fotografskim tronošcem. Potrebne su dvije fotografske glave – barndoor montaža postavlja se na onu koja se nalazi na tronošcu, a druga ide na gornji dio barndoor montaže te služi za usmjeravanje fotoaparata prema zvijezdama.

Za izradu montaže potrebno je sljedeće:

  • 2x drvene ploče (šperploče) dimenzija otprilike 10×25 cm
  • 1x šarka s odgovarajućim vijcima s ravnom glavom
  • 1x što duži M6 vijak (5-6 cm) sa slijepom maticom i T-maticom
  • 1x M5 vijak sa maticom
  • široke M5 i M6 podložne pločice i matice
  • 1x vijak s 3/8″ (colnim) navojem za fotografsku glavu (imaju ih Vijci Kranjec)
  • plastična slamka za sok (crvena!)
  • gumica za domaćinstvo
  • 1x čvrsti jogurt od 500g 🙂

Od alata treba vam samo bušilica i odvijači – ja sam se odlučio za vijke sa križnom glavom. Dvije drvene ploče potrebno je spojiti šarkom. Jednu ploču treba probušiti po sredini na udaljenosti od točno 229 mm od središta osovine šarke. Sadržaj jogurta je dobar za kvalitetnu probavu, ali za barndoor je potreban njegov poklopac. Kroz sredinu pokopca treba progurati M6 vijak te ga učvrstiti maticom i podložnom pločicom. Poklopac jogurta služiti će za precizno okretanje M6 vijka. Na to mjesto treba staviti M6 T-maticu kroz koju ide M6 vijak. Slijepa matica na vrhu vijka zaštititi će gornju drvenu ploču od oštećenja. Poklopac sa vijkom treba neprekidno okretati jedan puni krug u jednoj minuti i tako će se postići gibanje koje odgovara rotaciji zvijezda na nebu. Za preciznije okretanje, na poklopcu sam ucrtao deblje linije koje pokazuju intervale od 15 sekundi, a između njih tanje linije za intervale od 5 sekundi.

Barndoor montaža

Na ploči kroz koji ste provukli M6 vijak napravite još jednu rupu, bliže osovini šarke, gdje će se nalaziti M5 vijak. Taj vijak koristiti će za učvršćivanje odvojive pločice fotografske glave stativa na montažu. Pločica na sebi mora imati rupu kroz koju treba proći vijak. Kada se provuče kroz pločicu fotostativa i drvenu ploču, vijak treba učvrstiti maticom da čvrsto drži montažu na stativu. Ovaj korak po mogućnosti obavite kod kuće prije odlaska na fotografiranje zvijezda.

Na drugoj (gornjoj) drvenoj ploči
probušite rupu za vijak 3/8″ navoja. Udaljenost od šarke neka
bude malo veća od M5 vijka da im se glave ne bi sudarale. Rupa za
3/8″ vijak neka bude uža od promjera vijka kako bi se navoj
mogao na silu urezati u drvo. Pazite da vijak bude odgovarajuće
duljine – dovoljno dugačak da prihvati fotografsku glavu s druge
strane, ali dovoljno kratak da se glava može priljubiti uz površinu
drvene ploče. Ja sam koristio šperploču debljine 12mm i 3/8″
vijak duljine 25mm. Rastezljiva gumica za domaćinstvo držati će
dvije daske zajedno da se ne rastvore tijekom transporta i
postavljanja opreme.

Snalažljiviji samograditelji moći će osmisliti verziju montaže koja koristi samo jednu glavu fotostativa – montaža se može napraviti na drvenoj konstrukciji pod kutem koji odgovara geografskoj širini mjesta fotografiranja čime će biti paralelna sa zemljinom osi i usmjerena prema Sjevernjači. Barndoor je moguće i motorizirati – odgovarajućim elektromotorima može se eliminirati potreba za ručnim okretanjem vijka.

Prije početka fotografiranja osovinu šarke treba pažljivo usmjeriti prema Sjevernjači. Sjevernjaču je lako naciljati gledajući kroz plastičnu slamku za sokove zalijepljenu paralelno sa šarkom. Po potrebi osvijetlite slamku tako da Sjevernjaču namjestite točno u njenu sredinu. Crvena boja slamke pomoći će vam da ne izgubite noćni vid.

Za početak preporučam ekspozicije od 2 minute na ISO 1600. Objektiv zatvorite na f/5.6 da zvijezde budu oštre do ruba. Po mogućnosti koristite digitalne refleksne fotoaparate (DSLR) jer nude bolju kvalitetu fotografija od kompaktnih digitalaca. Na prvim pokušajima objektiv neka bude žarišne duljine do 50mm. Naravno, fotografije je potrebno snimati sa tamnog mjesta bez svjetlosnog onečišćenja grada, inače vam niti najbolja oprema neće pomoći da snimite Mliječni put i maglice. Uz ovakvu montažu i malo truda i vi ćete moći snimiti prekrasne vedute zvjezdanog neba!

Astrofotografija kroz teleskop

Najčešće pitanje koje se postavlja prilikom kupovine teleskopa je upravo kako napraviti fotografiju kroz teleskop. Fotografije šarenih maglica i udaljenih galaksija mamac su za sve koji vole astronomiju. Odmah u startu morate znati da je astrofotografija kroz teleskop vrlo zahtjevna. Odabir teleskopa, montaže i aparata za fotkanje ključan je za uspješnu astrofotografiju. Zahtjevi su znatno drukčiji od teleskopa za vizualno promatranje. Ako vam astrofotografija nije ključna, teleskop za vizualno promatranje će vas znatno manje koštati uz puno veću satisfakciju.

Ukratko – ne, ne možete fotografirati kroz teleskop iz dućana koji košta samo 3000 kn! OK, da budem precizniji – može se okinuti fotka Mjeseca, uz par trikova snimiti poneki detalj na planetima, napraviti snapshot mobitelom kroz okular, ali to je otprilike sve. Ako vam je to dovoljno, ok, ali za kvalitetne fotke potrebna je i kvalitetna oprema.

Astrofotografijom se vrlo uspješno možete baviti i bez teleskopa. O tome više u sljedećim tekstovima:

Također preporučam i tekst o kupovini teleskopa kao poklon budući da sve u njemu napisano odgovara za bilo koji početnički teleskop.

Ovaj tekst nije step by step uputa kako napraviti astrofotografiju. Biti će opisane smjernice za opremu koja je potrebna za astrofotografiju kroz teleskop, na vama je da usavršite metodu jednom kada opremu nabavite.

Za snimanje maglica i galaksija nužne su dugačke ekspozicije. Ovisno o teleskopu i aparatu ekspozicije se kreću od 2 pa čak i do 30 minuta. Za to vrijeme slika koju projicira teleskop mora biti savršeno mirna. Dakle, zvijezde se doslovno ne smiju niti malo mrdnuti inače će fotografija biti mutna i upropaštena.

Kako fotografirati kroz  teleskop?

Teleskop se zapravo koristi kao jedan veliki teleobjektiv. Umjesto okulara, direktno u fokuser se stavlja fotoaparat s kojega je skinut objektiv. Potreban je adapter (prsten) za odgovarajući bajonet proizvođača (Canon, Nikon, Sony…) na T navoj, a zatim još jedan adapter s T navoja na 1.25″ ili 2″ promjer fokusera. Neki teleskopi na fokuseru već imaju T navoj, a moguće je nabaviti i barlow leću s T navojem. Astronomske CCD/CMOS kamere često imaju već 1.25″ ili 2″ nastavak ili adapter.

T-prsten za DSLR i adapter za 1.25″ fokuser.

Montaža

Ključna stvar za astrofotografiju kroz teleskop je montaža. Ona je vrlo važna za dobru astrofotografiju i mora imati sljedeće karakteristike:

  • ekvatorijalna
  • motorizirana
  • čvrsta i robustna

Astrofotografija se može raditi jedino s ekvatorijalnom montažom. Takva montaža ima os koja je usmjerena prema nebeskom polu. Motori pokreću montažu brzinom rotacije Zemlje, ali u suprotnom smjeru – na taj način objekt ostaje u vidnom polju kamere tijekom snimanja fotografije. Alt-azimutalne montaže mogu također biti motorizirane i pratiti objekt koji se promatra. Međutim, zvijezde se prividno gibaju u krugu oko nebeskog pola, dok alt-azimutalna montaža radi korekcije u smjeru gore-dolje (altituda) i lijevo-desno (azimut) u odnosu na tlo.

Tragovi zvijezda oko nebeskog pola tijekom 45 minuta snimanja fotografije. Snimljeno blizu Metajne na Pagu.

Montaža za astrofotografiju je često skuplja od samog teleskopa. Nosivost montaže koju navode proizvođači obično se odnosi na vizualno promatranje. Za astrofotografiju se najčešće računa polovica te vrijednosti.

Prije snimanja montaža se mora nivelirati i jako dobro usjeveriti (rektificirati). Za vizualna promatranja dovoljno je os otprilike usmjeriti prema nebeskom polu, no za astrofotografiju rektifikacija mora biti gotovo savršena. U protivnom ćete na fotografiji dobiti rotaciju vidnog polja – na rubovima će zvijezde opisivati maleni luk oko središta fotografije. Što je veća žarišna duljina teleskopa, i rektifikacija mora biti bolja.

Neke fork (viličaste) montaže, popularne kod katadioptričkih teleskopa (schmidt-cassegrain) mogu se “pretvoriti” u ekvatorijalne upotrebom tzv. wedge-a. To je vrlo praktično, no takav sustav je nestabilniji od alt-azimutalne postavke.

Ekvatorijalna montaža

Montaže za astrofotografiju mogu imati polarni tražioc. To je maleni tražioc najčešće unutar rekstacenzijske osi (ona koja je usmjerena prema nebeskom polu) s ucrtanim zvijezdama za točno lociranje nebeskog pola. Na sjevernoj nebeskoj polutci nebeski pol se nalazi blizu Sjevernjače, ali ipak je udaljen otprilike 3/4 stupnja od zvijezde. Poželjno je da tražioc bude osvijetljen da bi se ucrtane oznake mogle vidjeti u mrklom mraku, ali možete se snaći tako da sami osvijetlite nitni križ crvenom lampicom prilikom namještanja montaže.

Usjeveravanje montaže

Ovaj dio možete preskočiti ako vas samo zanima što je sve potrebno za astrofotografiju. Ipak nije loše da se upoznate s metodom jer kod astrofotografije nije dovoljno samo “postaviti teleskop i početi fotkati”.

Montaže za astrofotografiju najčešće su kompjuterizirane i u svom programu imaju opciju za usjeveravanje. Nakon što montažu usmjerite prema nebeskom polu najbolje što možete, na kontroleru montaže treba precizno kalibrirati go-to. Prvo je potrebno u kontroler upisati datum, vrijeme i točne geografske koordinate. Zatim, program u kontroleru ponudi nekoliko sjajnih zvijezda koje su trenutno vidljive, a na vama je da ih točno centrirate u vidnom polju okulara ili fotografije. Zato bi bilo dobro da znate imena sjajnih zvijezda ili sa sobom imate barem nekav atlas ili planetarij program na smartphoneu/laptopu. Naime, ovisno o točnosti kojom ste napravili prethodne korake, program montaže pokušati će sam nanišaniti zvijezde za kalibraciju, ali je sasvim moguće da će prvu potpuno promašiti. Osim toga, ovisno o konfiguraciji terena Sjevernjača možda nije vidljiva na nebu! U centriranju će vam pomoći okular s nitnim križem ili označena točna sredina vidnog polja fotoaparata.

Postoje dodaci pomoći kojih se usjeveravanje može ubrzati ili automatizirati. To su QHY Polemaster, Celestron StarSense ili polar alignment opcija u SharpCap softveru.

Nakon go-to kalibracije program će vas uputiti da napravite korekcije na samoj montaži kako bi se precizno usjeverili. Znači, morati ćete uz pomoć vijka malo pomaknuti osi/nagib ekvatorijalne montaže. Metode proizvođača se mogu razlikovati, no najčešće treba centrirati Sjevernjaču ili neku drugu zvijezdu u okularu. Dobre montaže uopće ne moraju uzeti u obzir Sjevernjaču za usjeveravanje.

Ovaj korak se mora napraviti sa pažnjom i može trajati 30-60 minuta.

Ukratko:

  • niveliranje tronošca
  • grubo usjeveravanje
  • unos datuma, vremena i geografskih koordinata
  • go-to kalibracija
  • korekcija ekvatorijalne glave za precizno usjeveravanje

Ne, montaža ne mora imati go-to da bi se precizno usjeverilo. U tom slučaju ćete morati koristiti drift metodu i vrijeme za usjeveravanje se jako produljuje.

Sad je možda jasnije zbog čega se mnogi astrofotografi odlučuju na izgradnju vlastite male zvjezdarnice. Usjeveravanje se napravi samo jednom, vrlo precizno, i to je to!

Periodička greška

Ne, nismo još gotovi s montažom 🙂 Pa napisao sam već da je montaža najbitnija za astrofotografiju, zar ne? 😉

OK, fino ste usjeverili montažu, stavite aparat, počnete snimati neki zanimljiv objekt poput ostatka supernove Messier 1 u Biku i nakon par minuta ekspozicije dobijete ovo:

Periodička greška za vrijeme 13 minuta ekspozicije maglice M1. Sitne točkice su hot pikseli.

Problem je sljedeći: motore teleskopa pokreću pužni vijci koji nikada nisu savršeno izrađeni već imaju neke malene greške. Prostim okom to ne primjećujemo, ali za astrofotografiju, kao što sam već napisao, zvijezde moraju stajati savršeno mirno tijekom ekspozicije. Te greške se sa svakim okretom vijka ponavljaju pa to zovemo periodičkom greškom. Ona se manifestira tako da se cijelo vidno polje prividno giba prvo u jednom pa zatim u drugom smjeru i to se periodički ponavlja.

Teleskop, ovisno o žarišnoj duljini i velični piksela fotoaparata, ima neku moć razlučivanja. Razlučivost ovisi i o stabilnosti atmosfere (seeing). Zbog gibanja zraka vidimo da zvijezde trepere – dugačke ekspozicije će svjetlost zvijezde razvući na nekoliko piksela. Seeing se označava u lučnim sekundama (oznaka ) koju prividno zauzima zvijezda. Tipičan seeing je 2-3″. S druge strane, periodička greška može biti ±15″ ili više u jednom smjeru!

Periodička greška montaže. Lijevo je skala u lučnim sekundama.

Rješenje? Morate raditi korekcije brzine gibanja motora. Neke montaže imaju ugrađenu PEC (periodic error correction) funkciju. Čak i sa PEC funkcijom ostaje neka mala greška, obično oko 5″. Nekada dok se snimalo na film, to je bilo sasvim dovoljno, no za CCD kamere i digitalne fotoaparate se moraju raditi dodatne korekcije.

Autoguider

Još nismo došli ni do teleskopa, a već evo nove investicije u nizu opreme potrebne za astrofotografiju! Za potpunu eliminaciju grešaka u praćenju potreban je autoguider. Autoguider je dodatna kamera koja snima jednu jedinu zvijezdu u blizini objekta snimanja. Čim se zvijezda malo pomakne, autoguider šalje signal montaži da malo uspori ili ubrza okretanje pužnog vijka kako bi zvijezda ostala na istom mjestu.

Da, morate imati dodatnu kameru za korekcije praćenja. To može biti specijalizirana autoguider kamera, kamera za snimanje planta, jeftina (starija?) CCD kamera ili čak bolja web kamera. Ona mora biti dovoljno osjetljiva da otprilike u 2-3 sekunde ekspozicije može snimiti neku zvijezdu prema kojoj se rade korekcije. Ponekad se može dogoditi da u blizini željenog objekta vaš autoguider uopće ne može naći dovoljno sjajnu zvijezdu!

Da bi autoguider kamera uopće mogla snimiti zvijezdu mora nekako doći do njene slike! Autoguider kamera se može staviti na dodatni teleskop ili čak jači finder koji se stavlja paralelno uz primarni teleskop, a može se staviti i na off-axis guider.

Off-axis guider

Off-axis guider ima maleno zrcalo koje “krade” dio svjetlosti teleskopa i odbija ga sa strane gdje se stavlja kamera. Prednost je što se ne mora koristiti dodatni teleskop, ali je nedostatak ograničenost u mogućnosti traženja zvijezde za korekcije.

Tvrtka SBIG (Santa Barbara Instrument Group) koja proizvodi odlične astronomske CCD kamere ima patentirani dizajn gdje je paralelno s glavnim CCD čipom postavljen manji čip koji služi za autoguiding.

Fotoaparat ili CCD/CMOS kamera?

Kod astrofotografije se teleskop zapravo koristi kao veliki teleobjektiv. Zbog toga aparat za snimanje mora imati mogućnost skidanja objektiva ili se može koristiti specijalizirana CCD/CMOS kamera za astrofotografiju. Moderni digitalni aparati rade jako dobre fotografije u slabim svjetlosnim uvjetima, no specijalizirane astro kamere su znatno bolje.

Najveći neprijatelj snimanja tamnih objekata je digitalni šum. Pikseli na čipu “izmišljaju” neke vrijednosti kada se pojačava signal pa zato slika nikada nije potpuno crna, čak i ako se fotografira sa poklopljenim teleskopom ili objektivom. Šum reagira na temperaturu okoliša – što je hladnije, manji je i digitalni šum. U astrofotografiji je cilj svesti taj šum na najmanju moguću razinu da bi se željeni objekt bolje snimio. Budući da se šum ne pojavljuje uvijek jednako na istom pikselu (hot pikseli su nešto drugo!) radi se po nekoliko snimki objekta koje se uprosječuju kako bi se smanjio šum.

Šum se rješava i snimanjem tzv. dark framea – ekspozicije je jednaka kao kada se snima željeni objekt, ali se snima sa poklopcem na teleskopu! Na taj način snima se samo digitalni šum koji se u obradi fotografije oduzima od glavne fotografije da bi se smanjio šum.

CCD/CMOS kamere za astronomiju imaju brojne prednosti u odnosu na digitalne fotoaparate. Jedna od njih je upravo mogućnost hlađenja čipa. Čip se može hladiti 30° od temperature okoliša, ponekad čak i niže! Sa svakih 5-7° šum se dvostruko smanjuje pa je to velika pogodnost.

CCD/CMOS kamere snimaju fotografije u tzv. FITS formatu. Datoteke imaju 32-bitnu dubinu boje, a to znači ogroman dinamički raspon, tj. broj nijansi koje ostaju zabilježene. Najbolji DSLR aparati imaju tek 14-bitni konverter.

Mnoge maglice na nebu su od vodika koji im daje karakterističnu crvenkastu boju. DSLR aparati ispred čipa imaju filter koji blokira veći dio emisijske linije vodika (h-alpha linija). Neke sjajnije maglice će se zabilježiti kao crvenkaste, ali mnoge će ostati blijedo sive. Postoje posebni DSLR-ovi koji propuštaju nešto više crvene svjetlosti (Canon 60Da, Nikon D810A), ali i dalje će CCD kamere biti puno osjetljivije na taj dio spektra. Dobro rješenje je kupiti stariji i jeftiniji DSLR te ga modificirati micanjem filtera ispred čipa. Treba staviti drugi filter koji blokira infracrvenu svjetlost jer su čipovi osjetljivi na infracrveno.

CCD kamere mogu biti monokromatske – bez bayer filtera na pikselima. Prednost je puno veća osjetljivost jer bayer filteri propuštaju samo 1/3 dolazne svjetlosti. Astronomskim kamerama bayer filter nije potreban budući da su objekti dubokog svemira – nepokretni. Da bi se dobila fotografija u boji snimaju se fotografije kroz R, G i B filter koje se zatim kombiniraju s L (luminance) kanalom snimljenim kroz prozirni filter koji propušta cijeli spektar, a blokira samo infracrveno. Astronomske CCD kamere ponekad imaju integrirani kotač sa filterima, najčešće njih 5. Uz L (luminance, propušta cijeli vidljivi spektar), R, G i B filtere dodaje se i h-alpha filter koji propušta samo vodikovu liniju kako bi se dobile spektakularne fotografije vodikovih maglica.

California Nebula

Neki astrofotografi se odlučuju modificirati svoj DSLR stavljanjem peltier hlađenja. Astronomske CCD kamere i dalje su u prednosti – hlađenje je najčešće regulirano, tj. drži se konstatno na zadanoj temperaturi. Naime, da bi dark frameovi bili efikasni moraju se snimati na jednakoj temperaturi kao i fotografije objekta. Ovako se dark frame može snimiti kasnije, a noć cijela iskoristiti za astrofotografiju. Također, dark frameovi se mogu snimiti samo jednom i onda koristiti kasnije više puta!

CCD kamere za astronomiju nemaju memorijske kartice pa je potrebno korisiti laptop za snimanje i korekcije praćenja.

Teleskop

Evo, napokon smo došli i do teleskopa! Naravno da on nije najmanje bitan, ali za astrofotografiju je vrlo važno shvatiti gore napisane probleme.

Nije svaki teleskop pogodan za astrofotografiju. Kao i kod objektiva za fotoaparate, važan je f-broj – što je manji to će i ekspozicije biti kraće.

Najbitnije je, ipak, odabrati odgovarajuću vrstu teleskopa. Akromatski refraktori nisu pogodni za astrofotografiju upravo zbog kromatske aberacije. Zvijezde će imati ljubičasti halo i cijela fotografija će izgledati neoštro. Mnogi reflektori također nisu povoljni ako nisu osmišljeni baš za astrofotografiju. Moraju imati dovoljno veliko sekundarno zrcalo kako ne bi došlo do vinjetiranja, te fokuser niskog profila da slika na čipu uopće može doći u fokus.

Katadiopteri poput maksutov-cassegrain teleskopa imaju veliki f-broj i maleni snop svjetlosti pa bi ekspozicije trebale biti ekstremno dugačke i došlo bi do vinjetiranja. Neki maksutov-newton teleskopi su optimizirani za astrofotografiju. Schmidt-cassegrain teleskopi se pak često koriste u astrofotografiji iako su obično f/10. Ponekad se koriste u kombinaciji sa reduktorom fokusa. Katadiopteri su odlični za snimanje Mjeseca i planeta video kamerama.

Teleskopi za astrofotografiju moraju biti jako dobro korigirani na optičke pogreške. To naročito dolazi do izražaja na rubovima fotografije budući da su moderni čipovi sve većih formata. Čak i veliki, skupi teleskopi će profitirati od nekakvog korektora ili field flattenera. Nije baš zgodno da uz svu tu silnu opremu na rubovima vidnog polja imate izdužene i deformirane zvijezde.

Najčešći teleskopi za astrofotografiju su mali apokromatski refraktori. Ne zahtjevaju masivne montaže, uz field flattener zvijezde su oštre do ruba, a  f-broj je obično povoljan. odlični su za snimanje maglica, no najčešće nemaju dovoljnu žarišnu duljinu za većinu galaksija. Uz nekoliko iznimaka, galaksije su obično malene

Reflektori, newtoniani, također su popularan izbor. Obično se koriste oni veliki, od 8″ na više. Potrebne su im vrlo čvrste montaže pa nije čudno da teleskop nosi montaža koja je 3× skuplja od njega! Reflektori na rubu vidnog polja imaju komu pa je za veće čipove također potreban korektor. Dobro je što imaju male f-brojeve, ne pate od kromatske aberacije, a velike žarišne duljine i promjeri omigućuju detaljne fotografije galaksija.

Postoje i razni drugi dizajni teleskopa, specijalizirani astrografi koji se koriste samo za astrofotografiju. To su razni richtey-chretieni (“kreteni”), brzi newtoniani sa ugrađenim korektorima, brzi apo refraktori sa dodatnim lećama, korigirani schmidt-cassegraini itd. No o tome sada nije potrebno pisati – astrofotografi koji ih žele sigurno neće čitati ovaj tekst 😉

Astro Systeme Austria f/3.8 newtonian sa Wynne korektorom.

Za kraj

Još uvijek se želite baviti astrofotografijom? 😉 Nadam se da je sada jasnije zbog čega astrofotografija kroz teleskop nije jednostavna da se samo stavi aparat i počne pucati fotke. Nemojte da vas ovaj tekst obeshrabri – napraviti astrofotku kroz teleskop veliko je zadovoljstvo. Ovo što ste pročitali shvatite kao prečac za odabir opreme za astrofotografiju.

Uzmite u obzir da se sve ovdje napisano odnosi na fotografiranje objekata dubokog neba kroz teleskop. Astrofotografija može biti puno više od toga! Kroz teleskop se mogu snimati fantastični detalji na planetima bez korištenja silne navedene opreme (autoguidera, korekcija…). Kao što sam napisao na početku, astrofotke su odlične čak i bez teleskopa, a dugačke ekspozicije možete napraviti širokokutnim objektivima ili čak manjim teleobjektivima uz pomoć barndoor montaže vlastite izrade ili komercijalnog trackera. Osim toga, fotoaparat možete koristiti piggyback na svom teleskopu s ekvatorijalnom montažom!

U svakom slučaju, sretno s izborom, slobodno pišite komentare i pitajte što vas zanima!

Teleskop kao poklon – savjeti o kupovini

Teleskop je čest izbor kao poklon za rođendan ili Božić, nerijetko za djecu i mlade koje zanima znanost i astronomija. Od velikog izbora različitih vrsta teleskopa i cijena, nije lako napraviti dobar izbor. Ovim tekstom pokušati ću razbiti neke mitove o teleskopima i nadam se da ću vam olakšati kupovinu.

Teleskop nije nužan za astronomiju kao hobi. Prije nego što sam kupio teleskop, dvije godine koristio sam samo dalekozor. Dalekozor je odlična sprava za astronomiju, jednostavan za upotrebu, prenosiv, a može se koristiti i za promatranja u prirodi. Detaljnije pročitajte u članku o dalekozorima u astronomiji.

Mit br. 1: Dječji teleskop

Ne postoji “dječji teleskop”!

Teleskopi služe za gledanje svemira. Pravog svemira koji je jednak za sve nas koji u njemu živimo. Teleskopi nisu igračke! Kupite li teleskop-igračku ne možete od njega očekivati da će vam pokazati nebeske ljepote kao što niti od autića na pedale ne možete očekivati da će se voziti u stvarnom prometu.

Teleskopi mogu, doduše, biti masivni i teški, no takvi su uglavnom oni skuplji. U ovom tekstu ograničiti ćemo se na izbor povoljnijih teleskopa koji su težinom uglavnom ispod 10 kg.

Djeca se lako razočaraju, pa izbjegavajte jeftine teleskope. Komplicirani su za sastavljanje i upravljanje, klimavi su (slika se trese), slabe su svjetlosne moći (slika je tamna). Minimalni iznos za teleskop ne bi trebao biti manji od 1500-2000 kuna. Sve jeftinije od toga će u 90% slučajeva završiti u ormaru ili na Njuškalu, a dijete će izgubiti volju za astronomijom.

Mit br. 2: Povećanje teleskopa

Povećanje teleskopa nije njihova presudna karakteristika!

Teleskop koji se reklamira sa 565x povećanjem treba u širokom luku izbjegavati. Primarna funkcija teleskopa je skupljanje svjetlosti! Veći promjer objektiva = veća površina = sjajnija i oštrija slika. Velika povećanja koriste se samo za opažanje planeta, a i u tom slučaju rijetko kada će se moći koristiti više od 200x.

Ograničavajući faktori za postizanje velikog povećanja su promjer teleskopa i stabilnost atmosfere. Maksimalno moguće povećanje okvirno se računa kao promjer objektiva teleskopa u milimetrima pomnožen sa 2. Maleni 60 mm teleskop može podnijeti povećanje od 120x, nipošto 300x ili više kao što se često navodi.

Objekte dubokog svemira (maglice, galaktike, skupovi zvijezda) najbolje je opažati na malim i umjerenim povećanjima (30x – 100x). Naša najbliža galaktika M31 u Andromedi prividno je 6x veća od punog Mjeseca! Velika maglica u Orionu, M42, dvostruko je veća.

Mit br. 3: Tronožac

Teleskop uopće ne treba imati tronožac!

Najveći neprijatelj za astronoma početnika je – klimava montaža. Čak i maleni teleskop može biti optički solidan, ali ako se slika trese pri najmanjem dodiru i vjetru, to će biti vrlo frustrirajuće iskustvo. Teleskopi sa lećama, refraktori, često imaju dugačku cijev pa efekt poluge pogoršava situaciju.

Stvar spašava tzv. dobson montaža – drvena kutija s polukružnim utorima gdje se stavi teleskop koji ima “krugove” na cijevi. Jednostavno, efektno i stabilno.

Korado Korlević impresioniran velikim dobson teleskopom. Izvor: arhiva AD Beskraj

Mit br. 4: Ekvatorijalna montaža

Ekvatorijalna montaža je komplicirana za upotrebu i kod jeftinih teleskopa vrlo nestabilna!

Ne znate što je ekvatorijalna montaža? Učinite si uslugu i nemojte kupovati teleskop sa takvom montažom. Za početnike, naročito djecu, zbunjujuća je i komplicirana što rezultira frustracijama. Najbolja montaža za početnika je alt-azimutalna: pomaci su jednostavno gore-dolje, lijevo-desno. No sad kad ste to pročitali, pazite da montaža bude čvrsta – bolje stabilna montaža nego veći teleskop.

Alt-azimutalne montaže možete prepoznati pod oznakama “ALT-AZ” ili samo “AZ”. Dobsoni su također alt-azimutalni.

Ekvatorijalna montaža

Ekvatorijalne montaže imaju jednu os koja se usmjerava prema Sjevernjači. Pravilno namještena ekvatorijalna montaža omogućava praćenje objekata na nebu okretanjem samo jedne osi. U praksi to znači puno “koji je ovo vrag” i “šta sad da radim” pitanja prilikom slaganja montaže. Montaža se treba i balansirati, pa ako to ne napravite kako treba, teleskop će vas zveknuti po glavi kada otpustite kočnice.

Teleskopi sa ekvatorijalnom montažom obično negdje u nazivu imaju oznaku “EQ”.

Mit br. 6: Kompjuterizirani teleskop

Teleskopi sa bazom podataka i elektronskim kontrolerom neće vam olakšati snalaženje na nebu!

Takvi teleskopi nisu u mogućnosti bez ljudske pomoći tražiti nebeske objekte – treba ih kalibrirati. To znači – nivelirati, odrediti sjever, identificirati i teleskopom pronaći nekoliko sjajnih zvijezda na nebu. Tek tada će se teleskop moći pravilno orjentirati na objekt kojeg odaberete iz baze podataka. Ako se već trudite vizualno naći tih nekoliko zvijezda na nebu, onda možete pronaći i druge objekte uz pomoć karte neba, bilo papirnate ili mobilne aplikacije. Razliku u cijeni rađe potrošite na kvalitetniji teleskop.

Mit br. 7: slika kao na fotografijama

Slika u okularu nije ni približno slična astronomskim fotografijama!

Šarene maglice vidljive su jedino na fotkama dugih ekspozicija. Kroz teleskop ćete uglavnom gledati mutne sive mrlje i malene točkice. Objekti na nebu su tamni, a ljudskom oku treba jako puno svjetlosti da bi raspoznalo boje.

Niti najveći teleskopi ne pokazuju boje i detalje kao što se vide na fotografijama pa ako ste to očekivali, odustanite od kupovine. Boje se mogu vidjeti tek na nekim zvijezdama i suptilne nijanse na planetima. To je sve.

Poanta je vidjeti svemir vlastitim očima. Osjećaj kada gledate galaktiku čija je svjetlost na put krenula dok su još dinosauri šetali Zemljom, nezamjenjiv je!

Gdje kupiti teleskop?

Teleskope nemojte kupovati u supermarketima i shopping centrima. Loše su kvalitete, klimavi, slabe svjetlosne moći, prodavači uglavnom o teleskopima neće znati ništa više od onoga što piše na kutiji.

Teleskop obavezno kupite kod znalaca. U Hrvatskoj to su tek dvije trgovine – Teleskop centar te OI Optimus. Obje trgovine vode entuzijasti koji će vam rado pomoći u odabiru pa im se obratite s povjerenjem. OI Optimus je samo internet trgovina, a Teleskop centar ima dućan u Zagrebu. Izbor možete proširiti potragom po stranim internet trgovinama, ako naručujete iz EU, ne morate plaćati carinu.

Otvorenje Teleskop centra u Zagrebu, rujan 2010.

Ali, teleskopi su skupi!

I jesu i nisu. Sada su znatno jeftiniji i kvalitetniji nego krajem devedesetih kada sam se počeo baviti praktičnom astronomijom. Ako nemate barem 1500 kn za teleskop, bolje razmislite o nekoj knjizi, kalendaru sa fotografijama, posteru…ili jednostavno, štedite za kvalitetniji teleskop.

Što se sve dobije u paketu?

Osim teleskopa i montaže najčešće dobijete dva okulara, znači dva različita povećanja. Ako ih se nudi više za malo novaca – nemojte kupovati. To je garancija loše kvalitete. U optici nema magije kojom bi se mogla dobiti kvaliteta za male novce.

Dobra investicija je barlow leća – pomoću nje se dobivaju veća povećanja korisna za Mjesec i planete. Okular se stavlja u barlow leću i povećanje postaje veće za oznaku koju leća nosi – 2x, 2.5x ili 3x (barlow leća ima samo jednu od ovih oznaka!). Uz barlow leću od 2x, okular žarišne duljine 20mm daje povećanje poput okulara od 10mm bez barlow leće (20 mm/2x = 10 mm). Pazite dakle ako teleskop dolazi sa 20 mm i 10 mm okularima! U tom slučaju uzmite 2.5x ili 3x barlow da se ne kopiraju žarišne duljine.

Povećanje se računa tako da žarišnu duljinu teleskopa podijelite sa žarišnom duljinom okulara. Dakle, teleskop žarišne 900 mm i okular od 10 mm daju (900/10) 90x povećanje. Sa 2x barlow lećom povećanje je dvostruko veće – 180x.

Cijene barlow leća su 230 – 350 kn.

Koji teleskop kupiti?

Da, ima ih puno (Teleskop centar, Hrvatska, Teleskop Express, Njemačka, SkyPoint, Italija, Astroshop, Njemačka, FirstLight Optics, UK). Zadržati ćemo se na jeftinijim početničkim teleskopima. Kod njih zaboravite astrofotografiju kroz teleskop – biti će štosno ufotkati Mjesec i Jupiter mobitelom, ali to je uglavnom sve. Za podršku domaćim trgovinama astronomske opreme, svi linkovi vode na stranice Teleskop centra i njemačkog Teleskop Service (skraćeno: TS) čiji je OI Optimus zastupnik za Hrvatsku.

Najvažnije oznake teleskopa su promjer objektiva i žarišna duljina. Zaboravite mali 60 mm teleskop, montaža je klimava, skoro pa nema antirefleksivnih premaza na objektivu, i vrlo brzo će završiti u ormaru skupljajući prašinu. Umjesto toga, uzmite 70 mm refraktor koji ima puno bolju optiku. Verzija s žarišnom duljinom 700 mm je bolja, ali postoji verzija od 500 mm s prizmom koja daje ispravnu sliku, što je povoljno za gledanje prirode. U TS-u 70 mm verzija je € 115. Celestron Astromaster 70 je nešto skuplji (€ 130), ali je vrlo lijepog dizajna i jednostavan za upotrebu.

Vrste teleskopa:

  • Refraktor = refrakcija (lom) svjetlosti = objektiv ima leću.
  • Reflektor = refleksija (odbijanje) svjetlosti = objektiv ima zrcalo.
  • Katadiopter – najčešće ima dva zrcala i jednu leću.

Za više informacija pročitajte (pra)stari FAQ o teleskopima.

114/900 reflektor nije loš izbor. Promjer od 114mm prima dovoljno svjetlosti za sjajnije maglice i zvjezdane skupove, naročito ako se maknete iz grada pod tamno nebo. Mjesec će biti fantastičan, na Jupiteru se naziru detalji u prugama, a Saturn pokazuje Cassinijevu pukotinu u prstenu. Montaža EQ2 bi mogla biti stabilnija. Cijeni od 1490 kn dodajte još cijenu barlow leće jer povećanje od 90x nije dovoljno za planete. Nezgodno je što dolazi sa 10 mm i 20 mm okularima. TS StarScope 114 je € 169. Nisam oduševljen izborom okulara.

114/900 Tasco teleskop. Izvor: arhiva AD Beskraj.

90/900 refraktor je ekvivalent gornjem reflektoru. Nešto je skuplji, 1850 kn, ali ima kvalitetnu alt-azimutalnu montažu koja je jednostavna za korištenje. Kod TS (OI Optimus) možete nabaviti Celestron Astromaster 90 za € 235. Slična je cijena i za verziju na ekvatorijalnoj montaži.

Promatranje Sunca s 120/1200 refraktorom na ekvatorijalnoj montaži. Izvor: arhiva AD Beskraj

Najbolja opcija je 150/1200 dobson teleskop. Cijena od 2390 kn je vrlo povoljna, a promjer od 150 mm dovoljan je za godine i godine uživanja u pogledu na maglice i planete. Veća verzija od 200 mm je još bolja, no 1000 kn skuplja. TS nudi 150mm dobson za € 300. Računajte da se isplati nabaviti ove teleskope jer ako prestane interes za astronomijom, bez problema ćete ih moći prodati na Njuškalu.

SkyWatcher 150/1200

Maleni dobson 130/650 je štosan stolni teleskop, no kratka žarišna znači da optička os mora biti vrlo precizno namještena, a veća povećanja nisu dovoljno oštra i kontrastna. S cijenom od 1750 kn, osobno bi rađe odabrao nešto drugo. TS nudi 100mm Orion SkyScanner kratki dobson za € 139.

Maksutov teleskopi su nešto skuplji, ali jako dobri za promatranje planeta. Prednost im je što su kratki i kompaktni. 90/1250 dođe 1400 kn, a 102/1300 1940 kn – i to samo za optičku cijev, bez montaže, što je zgodno ako imate nekakav fotostativ. U protivnom, uzmite verziju na jednostavnoj StarQuest ekvatorijalnoj montaži za 2200 kn (90 mm) ili 2500 kn (102 mm). U ponudi je i 90mm maksutov sa malenom motoriziranom stolnom dobson montažom za 2000 kn.

Imate li kakvih pitanja za konkretne teleskope ili ako vam treba još koji savjet, slobodno napišite komentar!

Do tada, pročitajte Vedranovu priču kako se počeo baviti astronomijom i pogledajte njegove fantastične skice koje realno prikazuju kako se objekti vide kroz teleskop.

U Bobinoj kuhinji pročitajte recenzije teleskopa. Preporučam da pročitate test Bresser/Lidl 70/700 refraktora, SkyWatcher 300mm dobsona, SkyWatcher StarTravel 120 refraktora, a ponovite i tekst o dalekozorima u astronomiji.

Geminidi – najbolji godišnji meteorski show!

Kada u ne-astronomskom društvu krene priča o “zvijezdama padalicama”, uvijek se spomenu perzeidi, popularni meteorski potok kojeg redovno viđamo svake godine istih dana u kolovozu. Razumljivo je da su popularni budući da se mogu vidjeti za vrijeme toplih i vedrih ljetnih noći kada su mnogi na odmoru i to još na moru ili otocima gdje je manje svjetlosno onečišćenje.

Ipak, znatno bogatiji meteori su geminidi u prosincu. Maksimum pada obično između 13. i 15. prosinca svake godine. Dok perzeidi za vrijeme maksimuma imaju ZHR od 60 do preko 100, vrijednosti geminida se kreću od 120 do 200 (pogledajte profil aktivnosti 2011. godine).

Kako gledati geminide?

Kao i perzeidi, geminidi su dobili ime po zviježđu u kojem se nalazi radijant – Blizancima. Nije važno znati prepoznati gdje se točno nalazi zviježđe budući da se meteori mogu pojaviti bilo gdje na nebu. Važno je da imate bistro nebo i čim manje svjetlosnog onečišćenja pa ćete vidjeti više meteora. Svjetlost Mjeseca također smanjuje broj vidljivih zvijezda, pa tako i meteora.

Radijant perzeida (2016.) snimljen ultra širokokutnim objektivom.

Za promatranje geminida vam nisu potrebna nikakva optička pomagala! Dobra stvar kod geminida je da se zviježđe Blizanaca može vidjeti već u ranim večernjim satima pa meteorska aktivnost kreće već oko 21h. Ipak, meteori će postati brojniji tek nakon ponoći, sa maksimumom oko 2-3 po noći. Uzmite u obzir da se ZHR vrijednosti odnose na idealne uvjete, pa je realno očekivati dva ili tri puta manji broj vidljivih meteora. Meteori nisu pravilno raspoređeni u svojoj putanji oko Sunca pa se može dogoditi da ugledate 2-3 meteora kratko jedan za drugim, a zatim 5 ili 10 minuta niti jedan. Zato odvojite barem jedan sat za promatranje! Mnogo puta sam čitao komentare ljudi razočaranih meteorima da bi saznao da su gledali iz centra grada ili prije ponoći ili odustali nakon 10 minuta promatranja.

Budući da je prosinac, obavezno se dobro obucite! Pri tome jedna debela jakna nije dovoljna – stavite na sebe čim više slojeva odjeće! Ja obično stavim tri majice, košulju i dvije jakne te dva ili tri sloja na noge. Karimat ili dva plus vreća za spavanje i spremni ste za nebeski show!

Želite li fotkati meteore, proučite ovaj tekst.

Što su geminidi?

Geminidi su vrlo zanimljivi meteori. Primjećeni su prvi puta tek 1862. godine kada je aktivnost bila znatno slabija (ZHR 10-20). Svake godine postajali su sve brojniji da bi danas bili bogatiji od perzeida, što je vrlo kratko razdoblje u astronomskim terminima (perzeidi su prvi puta viđeni prije 2000 godina!).

Uzrok meteora obično su čestice kometa koje izgaraju u visokim slojevima atmosfere (40-80 km) kada putanja Zemlje prolazi kroz putanju kometa. U slučaju geminida, tijelo koje je izvor čestica nije komet već asteroid 3200 Phaeton!

Još uvijek nije potpuno jasno što se događa sa Phaetonom da proizvodi toliki broj čestica. Postoji hipoteza da je došlo do udara sa nekim drugim tijelom, da je Phaeton zapravo “ugasli komet”, no neke snimke su pokazale trag čestica koji se javlja za vrijeme periheliona. Phaeton prolazi zaista jako blizu Suncu, no mjerenja pokazuju da je broj izbačenih čestica u tom trenutnu vrlo malen, tako da ostaje misterij što se zapravo događa sa Phaetonom.

U svakom slučaju, ako bude vedro, skupite hrabrosti i dovoljno odjeće i obavezno ih pogledajte! A sljedeći puta kada u društvu počne priča o meteorima recite svima da geminidi jedu perzeide za doručak 😉

Što je pomrčina Mjeseca i kako ju fotografirati?

Pomrčina Mjeseca dešava se kada Mjesec uđe u Zemljinu sjenu, što se zbiva samo kada su Sunce, Mjesec i Zemlja točno poravnati. Pomrčina se dakle može dogoditi samo za punog Mjeseca (uštapa), no ne dešava se svaki puta jer zbog nagnutosti mjesečeve orbite ne dolazi uvijek do takvog poravnanja. Ipak, svakih nekoliko godina možemo uživati u ovoj pojavi. Za razliku od potpune pomrčine Sunca koju je moguće vidjeti samo sa uskog područja totaliteta, pomrčina Mjeseca vidljiva je gotovo sa cijele zemljine polutke koja je tada u mraku. Tijek pomrčine odvija se relativno sporo pa se u događaju može uživati i po nekoliko sati.

Geometrija pomrčine Mjeseca
Geometrija pomrčine Mjeseca

Pomrčina počinje ulaskom Mjeseca u zemljinu polusjenu, no zatamnjenje je vrlo blago i primjećuje se tek kada se Mjesec više približi zemljinoj sjeni. Djelomična pomrčina započinje ulaskom Mjeseca u zemljinu sjenu, a potpuna pomrčina kada je Mjesec u potpunosti u sjeni.

Pomrcina-skica-tekst
Tijek potpune pomrčine Mjeseca

Za vrijeme totaliteta Mjesec nije sasvim crn već poprima crvenkastu boju. Tome je zaslužna zemljina atmosfera koja lomi sunčevu svjetlost pa tako niti na Zemlji ne nastaje odmah mrak kada Sunce zađe ispod horizonta već znatno kasnije. Da se nalazite na Mjesecu za vrijeme pomrčine i pogledate Zemlju, odjednom bi vidjeli sve zalaske i izlaske Sunca te crvenkasno obasjanu atmosferu!

Pomrčinu Mjeseca nije teško fotografirati. Može se koristiti bilo koji fotoaparat, kompaktni ili refleksni, no u prednosti su oni koji imaju mogućnost ručnog namještanja postavki. Mjesec je relativno malen, zauzima svega 0.5° na nebu, pa će automatika biti prevarena tamnom noćnom scenom što će rezultirati preeksponiranjem mjesečeve površine i gubitkom detalja. Uzmite u obzir da je na Mjesecu – dan! Da bi se na površini vidjeli detalji (mora i krateri) biti će vam potrebne postavke aparata slične kao da fotografirate dnevnu scenu. Što više pomrčina napreduje i ekspozicije će trebati produljiti.

Iako se faze djelomične pomrčine mogu fotografirati bez upotrebe stativa, preporučam da ga koristite jer će za totalitet trebati eksponirati i nekoliko sekundi.

Koliko će se Mjesec zatamniti tijekom totaliteta ovisi o tome koliko mu putanja prolazi blisu središta sjene, ali i kakva je zemljina atmosfera u tom trenutku. Veća količina čestica u atmosferi uzrokovati će tamniju pomrčinu. Francuski astronom Danjon osmislio je jednostavnu skalu intenziteta L (luminoziteta) pomrčine:

  • L = 0 – Vrlo tamna pomrčina, Mjesec jedva vidljiv, naročito u maksimumu.
  • L = 1 – Tamna pomrčina s jedva vidljivim detaljima; Mjesec tamnosmeđe boje.
  • L = 2 – Tamno crvena boja Mjeseca, nešto svjetlija na rubovima sjene.
  • L = 3 – Mjesec boje opeke, svijetli rub sjene.
  • L = 4 – Svijetla pomrčina bakrene boje, na rubu sjene sjajnija, plavičastih tonova.

Brzi savjeti:

  • koristite odgodu okidanja i kod refleksnih aparata mirror lock up da se ne zatrese aparat i zamuti fotografiju
  • ne pretjerujte sa ISO osjetljivošću kako ne bi bilo previše digitalnog šuma
  • zatvorite objektiv na f/5.6, f/8 ili f/11 kako bi fotografija bila čim oštrija
  • fotkajte u raw formatu da kasnije po potrebi možete raditi korekcije

Tablica ekspozicija (izvor MrEclipse.com):

PomrcinaMjeseca_ekspozicije_bojaPreuzmite printer friendly PDF.

Puno je načina na koji možete fotografirati pomrčinu. Ako koristite širokokutni objektiv, slika Mjeseca će biti malena, no zato možete na jednu fotografiju složiti kompozit cijelog tijeka pomrčine. Budite pažljivi u kadriranju – ako je pomrčina na početku noći, ostavite mjesta na desno i gore jer će se tako kretati Mjesec kada bude se dizao iznad horizonta. Oko ponoći gibati će se gotovo pravocrtno prema desno, a pred jutro zalaziti će na zapadu odozgo prema dolje desno, kao što je bio slučaj na ovoj mojoj fotografiji pomrčine iz 2008. godine:

Pomrčina MjesecaPažljivo proračunajte vremenski razmak između pojedinih fotografija. Ja sam fotkao u intervalima od 6 minuta. Pojedinačne fotografije kasnije posložite jednu na drugu u nekom od programa za obradu ili u besplatnim programima za fotkanje tragova zvijezda kao što su Startrails i StarStaX.

Za detaljnije fotografije Mjeseca potrebno je koristiti teleobjektiv ili teleskop. Međutim, oprez – zbog rotacije Zemlje prividno se kreću i objekti na noćnom nebu, a s njima i Mjesec. Što je žarišna duljina veća, to će i pomak biti vidljiv na kraćim ekspozicijama. Sa teleobjektivom od 300mm pomak je vidljiv na ekspozicijama od 1-2 sekunde. To znači da treba postaviti veću ISO osjetljivost ili povećati otvor objektiva. Ne zaboravite na čvrsti stativ i odgodu okidanja!

No čak i sa 300mm objektivom Mjesec će biti relativno malen na fotografiji. Da bi bio zbilja veći na fotografiji morat ćete koristiti žarišnu duljinu (ili ekvivalent) od otprilike 1000mm.

Mjesec i planeti. Nikon D600 (full frame) + 300mm teleobjektiv.
Mjesec i planeti. Nikon D600 (full frame) + 300mm teleobjektiv.
Mjesec snimljen teleskopom - žarišna duljina 1340mm, Nikon D5100 (1.5 crop faktor).
Mjesec snimljen teleskopom – žarišna duljina 1340mm, Nikon D5100 (1.5 crop faktor).

Na skici pogledajte kako se mijenja veličina Mjeseca u odnosu na žarišnu duljinu objektiva. Lijevi broj je žarišna duljina full frame fotoaparata, desni se odnosi na 1.5x crop senzor digitalnog refleksnog fotoaparata.

Veličina Mjeseca u odnosu na žarišnu duljinu objektiva.
Veličina Mjeseca u odnosu na žarišnu duljinu objektiva.

Za fotografiranje totaliteta na većim žarišnim duljinama trebati će vam motorizirana ekvatorijalna montaža za teleskop. U protivnom će slika Mjeseca biti mutna zbog rotacije Zemlje. Ne brinite ako nemate moćni teleobjektiv ili ekvatorijalnu montažu – moderni digitalci imaju visoku rezoluciju pa slobodno izrežite (crop) samo Mjesec iz kadra i biti će to odlična fotografija za web i društvene mreže!

Zgodna ideja je napraviti kolaž pomrčine Mjeseca posložen u odnosu na sjenu našeg planeta tako da možemo vidjeti njen oblik. Donju fotografiju napravili su braća Cikota u Višnjanu za vrijeme pomrčine 2007. godine.

lunar_eclipse_vo_20070302_c1m
(c) Stefan & Aleksandar Cikota

U obradi fotografija ipak budite razumni i nemojte lijepiti izrezani Mjesec na širokokutnu fotku – svima koji su pročitali ovaj tekst biti će jasno da se radi o fotomontaži! 😉

Copy-paste novinarima i svima koji smatrate da vam je tekst bio dovoljno informativan, molim donirajte koju kunicu za trud 😉